The course syllabus focuses on important mathematical topics that are interconnected. The syllabus is organized and structured with the following tenets in mind: placing more emphasis on student understanding of fundamental concepts than on symbolic manipulation and complex manipulative skills; giving greater emphasis to developing students’ mathematical reasoning rather than performing routine operations; solving mathematical problems embedded in a wide range of contexts; using the calculator effectively.

The course includes project work, a feature unique to mathematical studies SL within group 5. Each student completes a project, based on their own research; this is guided and supervised by the teacher. The project provides an opportunity for students to carry out a mathematical study of their choice using their own experience, knowledge and skills acquired during the course. This process allows students to take sole responsibility for a part of their studies in mathematics.
The students most likely to select this course are those whose main interests lie outside the field of mathematics, and for many students this course will be their final experience of being taught formal mathematics. All parts of the syllabus have therefore been carefully selected to ensure that an approach starting from first principles can be used. As a consequence, students can use their own inherent, logical thinking skills and do not need to rely on standard algorithms and remembered formulae. Students likely to need mathematics for the achievement of further qualifications should be advised to consider an alternative mathematics course.

Owing to the nature of mathematical studies SL, teachers may find that traditional methods of teaching are inappropriate and that less formal, shared learning techniques can be more stimulating and rewarding for students. Lessons that use an inquiry-based approach, starting with practical investigations where possible, followed by analysis of results, leading to the understanding of a mathematical principle and its formulation into mathematical language, are often most successful in engaging the interest of students. Furthermore, this type of approach is likely to assist students in their understanding of mathematics by providing a meaningful context and by leading them to understand more fully how to structure their work for the project.